Artificial intelligence outperforms pulmonologists in the interpretation of pulmonary function tests.

Artificial intelligence outperforms pulmonologists in the interpretation of pulmonary function tests.

Publication date: Feb 14, 2019

The interpretation of pulmonary function tests (PFTs) to diagnose respiratory diseases is built on expert opinion which relies on the recognition of patterns and clinical context for the detection of specific diseases. In the study, we aimed to explore the accuracy and inter-rater variability of pulmonologists when interpreting PFTs and compared it against that of artificial intelligence (AI)-based software which was developed and validated in more than 1500 historical patient cases.120 pulmonologists from 16 European hospitals evaluated 50 cases comprising with PFT and clinical information resulting in 6000 independent interpretations. AI software examined the same data. ATS/ERS guidelines were used as the gold standard for PFT pattern interpretation. The gold standard for diagnosis was derived from clinical history, PFT and all additional tests.The pattern recognition of PFTs by pulmonologists (senior 73%, junior 27%) matched the guidelines in 74.4% (+/-5.9) of the cases (range: 56-88%). The inter-rater variability of 0.67 (kappa) pointed to a common agreement. Pulmonologists made correct diagnoses in 44.6% (+/-8.7) of the cases (range: 24-62%) with a large inter-rater variability (kappa=0.35). The AI-based software perfectly matched the PFT pattern interpretations (100%) and assigned a correct diagnosis in 82% of all cases (p

Topalovic, M., Das, N., Burgel, P.R., Daenen, M., Derom, E., Haenebalcke, C., Janssen, R., Kerstjens, H.A.M., Liistro, G., Louis, R., , Ninane, Pison, C., Schlesser, M., Vercauter, P., Vogelmeier, C.F., Wouters, E., Wynants, J., Janssens, W., and Investigators, Pulmonary Function. Study. Artificial intelligence outperforms pulmonologists in the interpretation of pulmonary function tests. 03400. 2019 Eur Respir J.



Please signin to view all article content and metadata.


Leave a Comment

Your email address will not be published. Required fields are marked *