Process, outcomes and possible elimination of aggregation with special reference to heme proteins; Likely remediation of proteinopathies.

Publication date: Feb 04, 2020

Protein folding is a natural phenomenon through which a linear polypeptide possessing necessary information attains three dimension functionally active conformation. This is a complex and multistep process and therefore, the presence of several intermediary structures could be speculated as a result of protein folding. In in vivo this folding process is governed by assistance of other proteins called molecular chaperons and heat shock proteins. Mechanism of protein folding and the nature these intermediary structures remains major challenge for modern biology. Mutation in gene encoding amino acid, adverse environmental conditions may result in misfolding of the linear polypeptide followed by the formation of aggregates and amyloidosis. Aggregation contributes to the pathophysiology of several maladies including diabetes mellitus, Huntington’s and Alzheimer’s disease. The propensity of native structure to form aggregated and fibrillar assemblies is a hallmark of amyloidosis. During aggregation of a protein, transition from ? helix to ? sheet is observed, and mainly ? sheeted structure is visualised in a mature fibril. Heme proteins are very crucial for major life activities like transport of oxygen and carbon dioxide, synthesis of ATP, role in electron transport chain, and detoxification of free radicals formed during biochemical reactions. Any structural variation in the heme proteins may lead to a fatal response. Hence characterization of the folding intermediates becomes crucial. The characterization has been deciphered with the help of strong denaturants like acetonitrile and TFE. Moreover, possible role of elimination of these aggregates and prevention of protein denaturation is also discussed. Current review deals with the basic process and mechanism of the protein folding in general and the ultimate outcomes of the protein misfolding. Since Native conformation of heme proteins is essential for some vital activities as listed above, we have discussed possible prevention of denaturation and aggregation of heme proteins such as Hb, cyt c, catalase & peroxidase.

Furkan, M. and Khan, R.H. Process, outcomes and possible elimination of aggregation with special reference to heme proteins; Likely remediation of proteinopathies. 06914. 2020 Curr Protein Pept Sci.

Concepts Keywords
Acetonitrile Denaturation
Alzheimer Neurodegeneration
Amino Acid Heat shock response
Amyloidosis Heme
ATP Structural proteins
Biochemical Proteomics
Carbon Dioxide Neurological disorders
Catalase Protein folding
Conformation Protein structure
Denaturation Branches of biology
Detoxification Proteins
Diabetes Mellitus Diabetes
Dimension Alzheimer s disease
Electron Transport Chain Assemblies hallmark amyloidosis
Fibril
Free Radicals
Heat Shock Proteins
Helix
Heme
Huntington
Misfolding
Mutation
Oxygen
Pathophysiology
Peroxidase
Polypeptide
Protein
Sci
Vivo

Semantics

Type Source Name
drug DRUGBANK ATP
disease MESH Neurodegenerative diseases
drug DRUGBANK Carbon dioxide
drug DRUGBANK Oxygen
disease MESH diabetes mellitus
disease MESH amyloidosis
disease MESH shock
pathway REACTOME Protein folding

Similar

Original Article

Leave a Comment

Your email address will not be published. Required fields are marked *