Publication date: Aug 15, 2024
Several studies have reported immune modulation by organophosphate (OP) pesticides, but the relationship between OP exposure and SARS-CoV-2 infection is yet to be studied. We used two different measures of OP pesticide exposure (urinary biomarkers (N = 154) and residential proximity to OP applications (N = 292)) to examine the association of early-childhood and lifetime exposure to OPs and risk of infection of SARS-CoV-2 using antibody data. Our study population consisted of young adults (ages 18-21 years) from the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) Study, a longitudinal cohort of families from a California agricultural region. Urinary biomarkers reflected exposure from in utero to age 5 years. Residential proximity reflected exposures between in utero and age 16 years. SARS-CoV-2 antibodies in blood samples collected between June 2022 and January 2023 were detected via two enzyme linked immunosorbent assays, each designed to bind to different SARS-CoV-2 antigens. We performed logistic regression for each measure of pesticide exposure, adjusting for covariates from demographic data and self-reported questionnaire data. We found increased odds of SARS-CoV-2 infection among participants with higher urinary biomarkers of OPs in utero (OR = 1. 94, 95% CI: 0. 71, 5,58) and from age 0-5 (OR = 1. 90, 95% CI: 0. 54, 6. 95).
Semantics
Type | Source | Name |
---|---|---|
disease | MESH | SARS-CoV-2 infection |
pathway | REACTOME | SARS-CoV-2 Infection |
disease | MESH | infection |
disease | VO | population |
disease | IDO | blood |