Publication date: Sep 30, 2024
The identification of influenza viruses and SARS-CoV-2 has garnered increasing attention due of their longstanding global menace to human life and health. The point-of-care test is a potential approach for identifying influenza viruses and SARS-CoV-2 in clinical settings, leading to timely discovery, documentation, and treatment. The primary difficulties encountered with conventional detection techniques for influenza viruses and SARS-CoV-2 are the limited or inadequate ability to identify the presence of the viruses, the lack of speed, precision, accuracy, sensitivity, and specificity, often resulting in a failure to promptly notify disease control authorities. Recently, point-of-care test methods, along with nucleic acid amplification, optics, electrochemistry, lateral/vertical flow, and minimization, have been demonstrated the characteristics of reliability, sensitivity, specificity, stability, and portability. A point-of-care test offers promising findings in the early detection of influenza viruses and SARS-CoV-2 in both scientific research and practical use. In this review, we will go over the principles, advantages, limitations, and real-world applications of point-of-care diagnostics. The significance of constraints of detection, throughput, sensitivity, and specificity in the analysis of clinical samples in settings with restricted resources is underscored. This discussion concludes with their prospects and challenges.
Concepts | Keywords |
---|---|
Electrochemistry | Influenza viruses |
Global | Rapid |
Longstanding | SARS-CoV-2 |
Minimization | Sensitivity |
Viruses |
Semantics
Type | Source | Name |
---|---|---|
disease | MESH | Influenza |
disease | IDO | nucleic acid |